熒光蛋白+激發(fā)光源在生物基因研究中發(fā)揮著巨大的作用,熒光蛋白在激發(fā)光源的激發(fā)下發(fā)出熒光,使得研究效果更直觀。以下為熒光蛋白的10個日常用途,本文為深圳熒鴻摘錄,僅供參考。關(guān)于激發(fā)光源選擇,請咨詢深圳熒鴻:0755-89233889.
(1) Localization:可以放在目的基因的N端,也可以放在目的基因的C端。這樣的構(gòu)建方式可以幫助我們觀察到目的基因是什么時候開始表達以及在哪里表達;
(2) Transcription reporter:將熒光蛋白放在待研究啟動子的后面,可以很好的觀察或者驗證該啟動子在特定細胞中的啟動活性;
(3) FRET(Frster Resonance Energy Transfer):用來研究兩個不同的蛋白或者用一個蛋白的兩個不同結(jié)構(gòu)域之間的相互作用關(guān)系。通常是使用激發(fā)/發(fā)射光譜有重疊的兩個熒光蛋白。目前蛋白-蛋白相互作用研究中最廣泛應用的FRET對就是青色熒光蛋白(cyan fluorescent protein, CFP)、黃色熒光蛋白(yellow fluorescent protein, YFP)。
(4) Split EGFP:FRET的另一種實現(xiàn)方法,同樣被用來研究蛋白與蛋白的相互作用。具體是將EGFP分割成兩部分,分別融合到兩個蛋白,當兩個蛋白靠近時,EGFP的兩部分蛋白開始折疊,成熟到發(fā)光。
(5) Biosensors:用來監(jiān)測細胞內(nèi)小生物分子或其他生理過程,比如AAV載體中的鈣指示劑。
(6) Optogenetics:是研究人員使用一種新的光控方法選擇并打開了某種生物的一類細胞。光遺傳技術(shù)–21世紀神經(jīng)科學領(lǐng)域最引人注目的革新,其主要原理是首先采用基因操作技術(shù)將光感基因(如ChR2,eBR,NaHR3.0,Arch或OptoXR等)轉(zhuǎn)入到神經(jīng)系統(tǒng)中特定類型的細胞中進行特殊離子通道或GPCR的表達。光感離子通道在不同波長的光照刺激下會分別對陽離子或者陰離子的通過產(chǎn)生選擇性,從而造成細胞膜兩邊的膜電位發(fā)生變化,達到對細胞選擇性地興奮或者抑制的目的。
(7) Chemogenetics:利用遺傳學原理,以化學小分子為工具解決生物的問題,或通過干擾、調(diào)節(jié)正常生理過程了解蛋白質(zhì)的功能。
(8) In Vivo Imaging:活體成像系統(tǒng)成像原理包括生物發(fā)光與熒光兩種技術(shù)。生物發(fā)光是用熒光素酶基因標記DNA,利用其產(chǎn)生的蛋白酶與相應底物發(fā)生生化反應產(chǎn)生生物體內(nèi)的光信號;而熒光技術(shù)則采用熒光報告基因(GFP、RFP)或熒光染料(包括熒光量子點)等新型納米標記材料進行標記,利用報告基因產(chǎn)生的生物發(fā)光、熒光蛋白質(zhì)或染料產(chǎn)生的熒光就可以形成體內(nèi)的生物光源。前者是動物體內(nèi)的自發(fā)熒光,不需要激發(fā)光源,而后者則需要外界激發(fā)光源的激發(fā)。
(9) Cell marking/selection:大家做細胞實驗,通常都喜歡質(zhì)粒帶有熒光標簽比如GFP,有了該熒光標簽可以很方便的判斷質(zhì)粒的轉(zhuǎn)染效率。這種情況通常是熒光蛋白由另外一個不同的啟動子控制或者由與目的基因相同的啟動子控制但是通過IRES連接。
(10) FACS:流式細胞分選技術(shù),可以方便的分選出帶有熒光蛋白的細胞,分選出的細胞可以進行培養(yǎng)或其它處理,做更深的研究